Substitutive Arnoux-Rauzy sequences have pure discrete spectrum

نویسندگان

  • Valérie Berthé
  • Timo Jolivet
  • Anne Siegel
چکیده

We prove that the symbolic dynamical system generated by a purely substitutive Arnoux-Rauzy sequence is measurably conjugate to a toral translation. The proof is based on an explicit construction of a fundamental domain with fractal boundary (a Rauzy fractal) for this toral translation. Communicated by Pierre Liardet Dedicated to the memory of Gérard Rauzy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry, Dynamics, and Arithmetic of S-adic Shifts

This paper studies geometric and spectral properties of S-adic shifts and their relation to continued fraction algorithms. Pure discrete spectrum for S-adic shifts and tiling properties of associated Rauzy fractals are established under a generalized Pisot assumption together with a geometric coincidence condition. These general results extend the scope of the Pisot substitution conjecture to t...

متن کامل

Geometrical Models for Substitutions

We consider a substitutive version of the Arnoux-Yoccoz Interval Exchange Transformation (IET) related to the Tribonacci substitution. We construct the so-called stepped lines associated to the fixed points of the substitution in the Abelianisation (symbolic) space. We analyse various projections of the stepped line recovering the Rauzy Fractal, a Peano Curve related to the work of Arnoux [1], ...

متن کامل

A Generalization of Sturmian Sequences; Combinatorial Structure and Transcendence∗

In this paper we study dynamical properties of a class of uniformly recurrent sequences on a k-letter alphabet with complexity p(n) = (k − 1)n + 1. These sequences, originally defined by P. Arnoux and G. Rauzy, are a natural generalization of the (binary) Sturmian sequences of Morse and Hedlund. We give two combinatorial algorithms for constructing characteristic Arnoux-Rauzy sequences. The fir...

متن کامل

Frequencies of Factors in Arnoux-rauzy Sequences

V. Berthé showed that the frequencies of factors in a Sturmian word of slope α, as well as the number of factors with a given frequency, can be expressed in terms of the continued fraction expansion of α. In this paper we describe a multi-dimensional continued fraction process associated with a class of sequences of (block) complexity kn+1 originally introduced by P. Arnoux and G. Rauzy. This v...

متن کامل

Factor Complexity of S-adic sequences generated by the Arnoux-Rauzy-Poincaré Algorithm

The Arnoux-Rauzy-Poincaré multidimensional continued fraction algorithm is obtained by combining the Arnoux-Rauzy and Poincaré algorithms. It is a generalized Euclidean algorithm. Its three-dimensional linear version consists in subtracting the sum of the two smallest entries to the largest if possible (Arnoux-Rauzy step), and otherwise, in subtracting the smallest entry to the median and the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1108.5574  شماره 

صفحات  -

تاریخ انتشار 2011